Free Web Hosting Provider - Web Hosting - E-commerce - High Speed Internet - Free Web Page
Search the Web

Logomuz ucu açık, yayılan 3 tane 8 den meydana gelir. Ortasındaki 3 elektronlu lityum atomu bütünden parçaya, içten dışa doğru dönen pozitif enerjiyi simgeler. -Sınama Çağında Her Zerre Allah'ın Askerleridir. Hz Mevlana-
 
Gir, Mucit Çık.
online stats
      online stats


  



 

Düzen Kuşağı..............Çalışmalarına Katılmak İçin Tıklayınız..

Yüce Yaratıcının Varlıklar Üzerine Attığı İmza: ALTIN ORAN

          Dünyanın, insanların, bitkilerin, ağaçların... , kısacası Kainat'ın yaratılışında yaratıcının kullandığı orandır. Aynı zamanda insanlar da teknolojide ve hayatta bu oranı kullanmaktadırlar. Kısaca biz altın orana "göz nizamının oranı" diyebiliriz.
Çoğu zaman doğayı gözlediğimizde bu oranın varlığını görebiliriz.

          Orta çağın en büyük matematikçilerinden biri olarak kabul edilen Fibonacci İtalya'nın ünlü Pisa şehrinde kesin olarak bilinmemekle birlikte 1170 yılında doğmuştur. Çocukluğu babasının çalıştığı Cezayir'de geçmiştir. İlk matematik eğitimini Müslüman bilim adamlarından almış ve İslam uygarlığının kitaplarını incelemiş ve üzerlerinde çalışmıştır.

         1201 yılında "Liber Abacci" (cebir kitabı) adında bir matematik kitabı yazmıştır. Arap rakamlarını ve bugün kullandığımız sayı sistemini Avrupa'ya tanıtmıştır. Bu kitapta, ilkokulda öğrendiğimiz temel matematik (toplama, çarpma, çıkartma ve bölme) kurallarını birçok örnek vererek anlatmıştır. Dönemi için Avrupa’da bilinmemekle birlikte bu kadim bilgilerin matematikte bir sıçrayış için başlatıcı etkiyi yapmış olduğunu ileri sürmek yanlış olmaz. Avrupa unutulan bilgileri Fibonacci sayesinde yeniden hatırlamıştır…

        Fibonacci Sayıları: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584,...
Fibonacci dizisinde bir sayıyı kendinden önceki sayıya böldüğünüzde birbirine belirgin şekilde yakın sayılar çıkar. Serideki 13. sırada yer alan sayıdan (233) itibaren bu sayı sabitlenir.

ALTIN       ORAN              =                   1,618
233          /     144                =                   1,618
377          /     233                =                   1,618
610          /     377                =                   1,618
987          /     610                =                   1,618

       Altın Oran (golden ratio, the golden ve divine proportion olarak da bilinen golden section), Fibonacci sayılarına ait bir özelliktir. Sanatta, doğa da hatta yaşayan organizmalar da bile görünen bu ilgi çekici oran çoğu kişi tarafından yüce bir Yaratıcı'nın varlığının ispatı olarak görülür.

        Fibonacci diziliminin genel olarak anlamı: ''Dizideki bir sayıyı kendinden önceki sayıya böldüğünüzde birbirine çok yakın sayılar elde edersiniz. Hatta serideki 13. sırada yer alan sayıdan (233) sonra bu sayı sabitlenir. İşte bu sayı 'altın oran' olarak adlandırılır''

       Bildiğimiz “p” Pi sayısı gibi belli bir sıradan sonra yani 13. sıradan sonra sabitleşen Altın oran 1.61803398874989...’a eşittir. Yunan alfabesinden gelen “F” PHi ile sembolize edilir.

 

 

Altın Oran'ın Görüldüğü ve Kullanıldığı Yerler :

DNA'da Altın Oran 

Canlıların tüm fiziksel özelliklerinin depolandığı molekül de altın orana dayandırılmış bir formda yaratılmıştır. yaşam için program olan DNA molekülü altın orana dayanmıştır. DNA düşey doğrultuda iç içe açılmış iki sarmaldan oluşur. Bu sarmallarda her birinin bütün yuvarlağı içindeki uzunluk 34 angström genişliği 21 angström'dür. (1 angström; santimetrenin yüz milyonda biridir) 21 ve 34 art arda gelen iki Fibonacci sayısıdır. 

Kar Kristallerinde Altın Oran 

Altın oran kristal yapılarda da kendini gösterir. Bunların çoğu gözümüzle göremeyeceğimiz kadar küçük yapıların içindedir. Ancak kar kristali üzerindeki altın oranı gözlerinizle göre bilirsiniz. Kar kristalini oluşturan kısalı uzunlu dallanmalarda, çeşitli uzantıların oranı hep altın oranı verir.(Emre Becer, "Biçimsel Uyumun Matematiksel Kuralı Olarak, Altın Oran", Bilim ve Teknik Dergisi, Ocak 1991, s.16.)

Uzayda Altın Oran 

Evrende, yapısında altın oran barındıran birçok spiral galaksi bulunur. 

"... Allah, herşey için bir ölçü kılmıştır." (Talak Suresi, 3)

"... O'nun Katında herşey bir miktar (ölçü) iledir." (Ra'd Suresi, 8)

 

YAPRAKLAR VE ALTIN ORAN

Çevremizdeki bitkilere, ağaçlara baktığımızda dalların birçok yaprakla kaplı olduğunu görürüz. Uzaktan baktığımızda, dalların ve yaprakların gelişigüzel, dağınık bir şekilde dizilmiş olduklarını düşünebiliriz. Oysa, her ağaçta, hangi dalın nereden çıkacağı ve yaprakların dal çevresinde dizilişleri, hatta çiçeklerin simetrik şekilleri dahi belirli sabit kurallar ve mucizevi ölçülerle belirlenmiştir. Bitkiler ilk yaratıldıkları günden beri bu matematik kurallarına harfi harfine uyarlar. Yani hiçbir yaprak veya hiçbir çiçek tesadüfen ortaya çıkmaz. Bir ağaçta kaç dal olacağı, dalların nereden çıkacağı, bir dal üzerinde kaç yaprak olacağı ve bu yaprakların hangi düzenlemeyle yerleşeceği önceden bellidir. Ayrıca her bitkinin kendine özgü dallanma ve yaprak diziliş kuralları vardır. Bilim adamları bitkileri sadece bu dizilişlerine göre tanımlayıp sınıflandırabilmektedirler. Olağanüstü olan ise, örneğin Çin'deki bir kavak ağacı ile İngiltere'deki bir kavak ağacının aynı ölçü ve kurallardan haberdar olmaları, aynı oranları uygulamalarıdır. Her bitkiyi kendine özgü matematiksel hesaplarla en estetik şekilde yaratan, tesadüfler olamaz elbette. Tüm bu estetiğin ve kusursuz hesaplamalarla yapılan tasarımın yaratıcısı sonsuz ilim sahibi olan Allah'tır. Kuran'da da bildirildiği gibi;

Göklerin ve yerin mülkü O'nundur; çocuk edinmemiştir. O'na mülkünde ortak yoktur, herşeyi yaratmış, ona bir düzen vermiş, belli bir ölçüyle takdir etmiştir. (Furkan Suresi, 2)

 

Mikro Dünyada Altın Oran 

Adeno virüs altın orana sahip geometrik yüzeylere sahiptir.

Geometrik şekiller sadece üçgen, kare veya beşgen, altıgen ile kısıtlı değildir. Bu saydığımız şekiller değişik şekillerde de biraraya gelerek yeni üç boyutlu geometrik şekiller oluşturabilirler. Bu konuda ilk olarak küp ve piramit örnek olarak verilebilir. Ancak bunların dışında, günlük hayatta hiç karşılaşmadığımız hatta ismini dahi ilk defa duyduğumuz tetrahedron (düzgün dört yüzlü), oktahedron, dodekahedron ve ikosahedron gibi üç boyutlu şekillerde vardır. Dodekahadron 13 tane beşgenden, ikosahedron ise 20 adet üçgenden oluşur. Bilim adamları bu şekilleri matematiksel olarak birbirine dönüşebileceğini ve bu dönüşümün altın orana bağlı oranlarla gerçekleştiğini bulmuşlardır. 

Miroorganizmalarda altın oran barındıran üç boyutlu formlar oldukça yaygındır. Birçok virüs ikosahedron yapısında bir biçime sahiptir. Bunların en ünlüsü Adeno virüsüdür. Adeno virüsünün protein kılıfı, 252 adet protein alt biriminin düzenli bir biçimde dizilmesi ile oluşur. İkosahedronun köşelerinde yer alan 12 alt birim ise beşgen prizmalar biçimdedir. Bu köşelerden diken benzeri yapılar uzanır. 

Virüslerin altın oranları bünyesinde barındıran formlarda olduğunu tespit eden ilk kişi 1950'li yıllarda Londra'daki Birkbeck Koleji'nden A. Klug ile D. Caspar'dır.(J. H. Mogle, et al., "The Stucture and Function of Viruses", Edward Arnold, London, 1978.) Üzerinde ilk tespit yapılan virüs ise Polyo virüsüdür. Rhino 14 virüsü de Polyo virüsü ile aynı formu gösterir. 

 

PHI, kendini tekrarlayan bir özelliğe de sahiptir. Altın Orana sahip her şekil, Altın Oranı kendi içinde sonsuz sayıda tekrarlayabilir. Aşağıdaki şekilde, her beşgenin içinde meydana gelen pentagramı ve her pentagramın oluşturduğu beşgeni ve bunun makro kozmik ve mikro kozmik sonsuza kadar Altın Oranı tekrarlayarak devam ettiğini görebiliriz.

 

 İNSAN VÜCUDUNDA ALTIN ORAN

İnsan gözünün ALTIN ORAN a bu kadar yakın olmasının, estetik açıdan sürekli olarak ALTIN ORAN a uygun şekil ve yapıları tercih etmesinin bir nedenini, yaşadığı çevre olan doğada hemen her an ALTIN ORAN la karşı karşıya olmasının yanı sıra, kendi vücudunun hemen her noktasında ALTIN ORAN a sahip olmasında arayabiliriz. Aşağıda oranlarda insanında ne kadar ALTIN ORAN örneği olduğunu göreceksiniz:
Boy/Bacak boyu
Beden boyu/kol altı beden boyu
Tam kol boyu(Boyun-Parmak ucu)/Dirsek - Boğaz
Parmak ucu - omuz/Parmak ucu - Dirsek
Göbek - Omuz/Göbek - Bel

 

İNSAN YÜZÜNDE ALTIN ORAN
İdeal ölçülere sahip bir insan yüzünde de sayısız ALTIN ORAN örnekleri görmek mümkündür:
Yüz yüksekliği/Yüz genişliği
Tepe - Göz yüksekliği/Saç Dibi - Göz Yüksekliği
Göz - çene arası/Burun - çene arası
Alın genişliği/Burun boynu
Göz - Ağız/Burun boyu
Burun altı - çene/Ağız - Çene
Yüz genişliği/Gözbebekleri arası
Gözbebekleri arası/Ağız genişliği
Ağız genişliği/Burun Genişliği

 

 

1) Ayçiçeği: Ayçiçeği'nin merkezinden dışarıya doğru sağdan sola ve soldan sağa doğru tane sayılarının birbrine oranı altın oranı verir. 



2) Papatya Çiçeği: Papatya Çiçeğinde de ayçiçeğinde olduğu gibi bir altın oran mevcuttur.

3) İnsan Kafası: Bildiğiniz gibi her insanın kafasında bir ya da birden fazla saçların çıktığı düğüm noktası denilen bir nokta vardır. İşte bu noktadan çıkan saçlar doğrusal yani dik değil, bir spiral, bir eğri yaparak çıkmaktadır. İşte bu spiralin ya da eğrinin tanjantı yani eğrilik açısı bize altın oranı verecektir.

4) İnsan Vücudu: İnsan Vücudunda Altın Oran'ın nerelerde görüldüğüne bakalım:
a) Kollar: İnsan vücudunun bir parçası olan kolları dirsek iki bölüme ayırır(Büyük(üst) bölüm ve küçük(alt) bölüm olarak). Kolumuzun üst bölü- münün alt bölüme oranı altın oranı verceği gibi, kolumuzun tamamının üst bölüme oranı yine altın oranı verir.
b) Parmaklar: Ellerimizdeki parmaklarla altın oranın ne alakası var diyebilirsiniz. İşte size alaka... Parmaklarınızın üst boğumunun alt boğuma oranı altın oranı vereceği gibi, parmağınızın tamamının üst boğuma oranı yine altın oranı verir.
5) Tavşan: İnsan kafasında olduğu gibi tavşanda da aynı özellik vardır.

6) Mısır Piramitleri: İşte size Altın Oran'ın en eski örneklerinden biri... Şimdi ne alaka Altın Oran ve Milattan Önce yapılan Mısır Piramitleri? Alaka şu; Her bir piramitin tabanının yüksekliğine oranı evet yine altın oranı veriyor.

7) Leonardo da Vinci: Bilindiği gibi Leonardo da Vinci Rönesans devri ünlü ressamlarındandır. Şimdi bu ünlü ressamın çizmiş oolduğu tabloları inceleyelim.
a) Mona Lisa: Bu tablonun boyunun enine oranı altın oranı verir.
b) Aziz Jerome: Yine tablonun boyunun enine oranı bize altın oranı verir.

8) Picasso: Picasso da Leonardo da Vinci gibi ünlü bir ressamdır. Ve resimlerinde bu oranı kullanmıştır.

9) Çam Kozalağı: Çam kozalağındaki taneler kozalağın altındaki sabit bir noktadan kozalağın tepesindeki başka bir sabit noktaya doğru spiraller (eğriler) oluşturarak çıkarlar. İşte bu eğrinin eğrilik açısı altın orandır.

10) Deniz Kabuğu: Denize çoğumuz gitmişizdir. Deniz kabuklarına dikkat edenimiz, belki de kolleksiyon yapanımız vardır. İşte deniz kabuğunun yapısı incelendiğinde bir eğrilik tespit edilmiş ve bu eğriliğin tanjantının altın oran olduğu görülmüştür.

11) Tütün Bitkisi: Tütün Bitkisinin yapraklarının dizilişinde bir eğrilik söz konusudur. Bu eğriliğin tanjantı altın orandır.

12) Eğrelti Otu: Tütün Bitkisindeki aynı özellik Eğrelti Otu'nda da vardır.

13) Elektrik Devresi: Ya demek ki Altın Oran sadece Matematik ve kainatta değil, Fizik'te de kullanılıyormuş. Nasıl mı? Şöyle... Verilen n tane dirençten maximum verim elde etmek için bir paralel bağlama yapılması gerekir. Bu durumda Eşdeğer Direnç, yani Reş= yani altın oran olur.

14) Salyangoz: Salyangozun Kabuğu bir düzleme aktarılırsa, bu düzlem bir dikdörtgen oluşturur (-ki biz bu dikdörtgene altın dikdörtgen diyoruz.-) İşte bu dikdörtgenin boyunun enine oranı yine altın oranı verir.

 

15) OTOMOTİV SANAYİ: İlk önce ben size bir soru yönelteyim. Estetik bakımından bir Murat 131 mi daha çok ilginizi çeker yoksa bir Mazda ya da Toyota mı? Tabi ki Mazda ya da Toyota demişsinizdir. Peki bunun nedenini hiç düşündünüz mü? Ben size söyleyeyim. Şimdi Murat 131'e bakıyorsunuz, baktıkça içiniz kararıyor, yine bakıyorsunuz yine kararıyor. En sonunda ya kardeşim bu ne biçim araba diyorsunuz. Ama gidip bir Mazda ya da Toyota'ya bakıyorsunuz. Baktıkça içiniz rahatlıyor, yine bakıyorsunuz ferahlıyorsunuz. Çünkü o kadar güzel bir estetik var ki. İşte bu estetiği eğim sağlıyor. Mesela Murat 131'in önü, arkası, kapısı her yeri düz (Mübarek kibrit kutusu) Ama Mazda ya da Toyota'nın kapısında özellikle ön ve arka tamponunda bir eğim var. İşte bu eğimin eğrilik açısı araştırılmış ve bunun altın oran olduğu görülmüştür. Bundan dolayı Çin, Amerika, Japon Otomotiv Sanayi Dünya'da ilk üçü oluştururken; Türkiye maalesef ve maalesef 30-40-50. sıralarda yer almakta. İnşallah bir gün bunu biz de akıl ederiz...

16) MİMAR SİNAN: Mimar Sinan'ın da bir çok eserinde bu altın oran görülmektedir. Mesela Süleymaniye ve Selimiye Camileri'nin minarelerinde bu oran görülmektedir.



Kaynaklar: Matematikcifatih , Wikipedia, Harun Yahya

 

Celal ÖNGÜN Teknoloji Ve Tasarım Öğretmeni


ANASAYFA

  Düzen Kuşağı

  Kurgu Kuşağı

  Yapım Kuşağı

  Yarışmalar

  Patent

  İnovasyon

  Hayal Gücü

  Ar-Ge

  İcatlar

  Mucitler

  Dokümanlar

  Haberler

  Bağlantılar

  Ziyaretçi Defteri

  Blog

  İletişim



Google Grupları
ttdersi.itgo.com grubuna abone ol
E-posta:
Bu grubu ziyaret et